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SUMMARY 

The purpose of this paper is to investigate the effect of a non-uniform mesh in two dimensions (2D). A change in 
mesh size will, in general, result in spurious refraction (and reflection) which is entirely numerical (rather than 
physical) in origin. To facilitate the analysis, the mesh geometry has been highly simplified in that only a single 
change in mesh size is considered. The analysis is based on a finite element wave model. 

The domain consists of two conterminous regions discernible only by their different nodal spacings in the x- 
direction. The interface between the two regions is internal to the mesh and is a straight line. The model is based 
upon the Crank-Nicolson linear finite element scheme applied to the second order wave equation. The results of 
the analysis are confirmed by numerical experiments. It is shown that under particular numerical conditions total 
internal reflection may occur and when this is the case, the transmitted wave is evanescent. An analysis of the 
energy flux associated with the incident, reflected and transmitted waves shows that energy is conserved across the 
interface between the two regions. 
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1. INTRODUCTKlN 

An appreciation of the effects of a non-uniform mesh is fundamental to a good understanding of the 
processes occumng in numerical models with varying mesh sizes. This is particularly relevant to time 
dependent finite element (FE) models and interactively nested finite difference (FD) models (in 
contradistinction to passively nested FD models). Practioners are often faced with questions such as 
‘how much can I change the mesh size and what are the consequences?’ 

In 1D linear systems, these questions have been partly addressed.’-3 The analyses were completed 
for the simplified situation of a 1D domain consisting of two semi-infinite regions abutting at a 
common interfacial node. The two regions were discernible on numerical grounds (e.g. different mesh 
spacings or different numerical algorithms) or physical grounds (effected by an abrupt change in 
coefficient in the governing equation). The latter case is not considered herein and hence the inclusion 
of the word ‘spurious’ in the title of the present paper. 

The magnitude of the effects of a change in 1D mesh size were quantified by determining the 
amplitudes of the transmitted and (unwanted) reflected waves, and their associated energy fluxes due to 
an incident wave. In a more general sense, the incident wave may be interpreted as one of many Fourier 
components which can be superimposed to make up a general waveform. 

In ID, a change in mesh size results in both wave rejection and wave transmission. In 2D however, 
there is an additional process at work viz wave refraction. The interface between the two conterminous 
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Figure 1. (a) Section and (b) plan view of an incident wave impinging on an abrupt change in depth giving rise to a reflected wave 
and a transmitted wave 

regions is a straight line, and incident waves impinging upon the interface give rise to a reflected wave 
and a transmitted wave. The incident wave is refracted as it passes into the downstream region. It will 
also be shown that under particular numerical conditions total internal reflection (TIR) can occur- 
obviously an undesirable result. 

Since the algebra for the analysis quickly becomes lengthy, two major simplifications have been 
made. Firstly, the present paper is concerned with the relatively simple, lumped 2D FE ‘wave equation’ 
scheme with Cranl-Nicolson finite differencing in time. This is a linear system in which superposition 
is valid. In a non-linear system, superposition would not hold and small wavelengths would be 
continually generated by the non-linear terms, especially at any discontinuities. 

Secondly, the FE mesh has a regular geometry. Although it is two dimensional, only a single, abrupt 
change in mesh size is considered together with a straight line interface. An irregular interface would 
result in a conhsed wave field and render the analysis intractable. However, the wave processes of 
reflection and refraction would still be present. Finite element meshes used in engineering practice 
would normally (i) be graded, (ii) vary in all directions and (iii) have irregularly shaped elements. 

Before proceeding with the analysis for the discrete system, it is instructive to first consider a 
parallel case in the continuum in which the wave reflection, refraction and transmission are necessarily 
effected by physical means. In this case, the only difference between the upstream region (referred to as 
region 1) and the downstream region (i.e. region 2) are the mean depths (Figure 1). 

2. GOVERNING EQUATIONS 

2.1. Continuum 

The analysis of wave behaviour in the continuum is based upon the linear shallow water equations 

% *  -+g- -0 ,  
at ax 
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% au av 
at ax ay - + h - +  h -  = 0, (3) 

where (u, v) are the (x, y) velocity components, q is the surface elevation above mean water level, h is 
the mean depth which is constant and g is the acceleration due to gravity. Equations (1) and (2) are the 
x- and y-momentum equations and equation (3) is the continuity equation. 

The shallow water equations are used here in preference to the second order wave equation in order 
to facilitate enforcing the internal boundary conditions across the interface. If it is assumed that the 
velocities (u, v)  vary sinusoidally in time with angular frequency w, it can be shown from equations (1) 
and (2) that 

The dispersion relation for the continuum is found by substituting equations (4), (5) and the solution 
for a unit amplitude wave, q = exp [i(wt - oxx - oyy)] into equation (3) giving 

0 = foc,  ( 6 )  

where o = 

2.2. Discrete System 

c: + o; and c = a. vl 
The analysis of wave behaviour in the discrete system is based upon the second order wave equation. 

The wave equation is obtained by taking the x-derivative of equation (l), the y-derivative of equation 
(2), the time derivative of equation (3) and eliminating all mixed derivatives. 

The dispersion relation for the discrete system is determined in a later section. 

3. REFRACTION IN THE CONTINUUM 

The waves present are the incident wave which gives rise to a reflected wave and a transmitted wave 
(Figure 1). In region 1, the surface elevation is the result of a unit incident wave with wavenumber 
components (crXl, oYl) and a reflected wave with amplitude p and wavenumber components 

(8) 

( -  0x1, oyd. 

q ,  = ei(ot-~x~x-u y ~ ~ )  + pei(Wf+Ozlx-uyw) 

Using equations (4), (5) and (€9, the velocity components in the upstream region (u l ,  vl) can be 
determined as 
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Similarly, in the downstream region the surface elevation is determined by the transmitted wave with 
wavenumber components (axz, ay2) and velocity components (uz, vz). 

t (1 1) i(of-u,2x-uy2y) qz = r e  

Enforcement of the internal boundary conditions along the interface (x = 0) permits the solution for the 
four unknowns ax2, ayz, and z. The parameters w,  axl and ayl are known. 

Mass flow balance and continuity of pressure (and hence surface elevation) across the interface at 
x = 0 requires (for all times and for all y )  

u l h  = U Z h ,  (14) 

t l l  = t l z .  

Substitution of equations (8), (9), (1 1) and (12) into (14) and (1 5 )  yields 

ay2 = ayl (Snell’s law) 

= 1 + p .  (20) 

Since the system is linear, the same angular frequency is applicable to both regions and a,.. can be 
found from the kinematic relation 

w = c1a1 = cza2, (21) 

where cl = a and c = a. That is 

This completes the definition of the system of reflected and transmitted waves. The conditions for 
the occurrence of TIR can be determined from an examination of (i) the angles which the incident and 
transmitted wave trains make with the positive x-axis, viz 0, and O2 and (ii) the magnitude of the 



SPURIOUS NUMERICAL REFRACTION 1053 

reflection coefficient, I f i  I . 

where use has been made of Snell's law. When hl < h2, c1 < c2 and equation (21) requires c1 > 02. 

From equations (23) and (24), $1 < O2 and the transmitted wave is refracted towards the interface. At 
the critical condition, the transmitted wave is refracted along the interface and in this case 

where aX2 is pure imaginary. Substituting equation (25) into ( 1  8) yields I f i  1 = 1 indicating TIR. By 
requiring finite surface elevation at x = co, the positive sign in equation (25) is discarded. Substituting 
equation (25) into equation (1 1) gives the resulting surface elevation as 

i(wt - uyv) -iurzx v 2  = zrle e 

= Tqe'(w' - qYvu),--x. 

*$, Moving in the positive x direction, q2 is damped in space by the factor e- 

4. REFRACTION IN THE DISCRETE SYSTEM 

In the discrete numerical system, the two conterminous regions are discernible on numerical rather 
than physical grounds; that is by their different mesh spacings, rather than different depths as for the 
continuum case. The effects however, are similar. 

4.1. Dispersion relation 

The spatial discretisation of equation (7) was effected through the application of the lumped mass, 
Galerkin FE technique using linear, rectangular finite elements (Ax x Ay) and lumped mass matrix. 

where Ax, Ay, At are the discrete step sizes in space (x, y )  and time (t);j ,  k, n are the indices indicating 
the node position GAx, kAy) and time t = nAt and s = AyIAx = mesh aspect ratio. 

The second order time derivative in (27) will be approximated with a centred finite difference 
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Figure 2. Dispersion relations for (a) the discrete system and (b) the continuum. Contours are for wAdn. Conditions C, = 1/10; 
A y / h  = 1 

formula, viz 

The dispersion relation for a mesh with nodal spacings Ax and Ay in the x and y directions, is found by 
substituting a solution of the form 

(29) ,,n = ei(onAt-joAxcos$-koAysin$) 
1. k 
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into equation (27). The dispersion relation for the 2D discrete system is found to be 

c c  
sin2 (y) = % [(s2 + 1)(2 - cos y, cosy) - (2s' - 1) cos yx  + (s2 - 2)  cosy,,], (30) 

where (yx ,  y,,) = ( a h  cos 0, aAy sin 0) and the Courant numbers are defined as (C,., C,,) = (cAt/Ax, 
cAtlAy). 

The dispersion relations corresponding to waves moving in the positive x-direction for both the 
discrete system (6) and the continuum (30) are plotted in Figure 2a and b respectively. For the discrete 
system plot, the conditions are: square mesh (i.e. Ax = Ay) and C, = C,, = 0.1. 

4.2. Discrete equations 

In the numerical refraction analysis which follows, the domain consists of two regions with different 
but regular grids. The interface between the two regions is defined along x = 0 and marks the boundary 
between two different step lengths in the x direction (see Figure 3a). 

Region 1 is characterized by finite elements of size (Ax, x Ay) and region 2 by elements of size 
(Ax2 x Ay). The change in mesh size between the two regions is quantified by the parameter r = Axz/ 
Axl. Thus r > 1 represents a mesh expansion in the x-direction and vice versa for a mesh contraction. 

To simplify the algebra, the finite elements in region 1 are taken to be squares (i.e. Axl =Ay). 
Setting s = 1 or s = l lr  in equation (27) gives the FE analogues of equation (7) to the left or right of the 
junction respectively. At the junction, application of the FE technique leads to 

Substituting equation (28) and r = Ax2/Axl into equation (3 1) gives 
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I unit uidth 

Figure 3. (a) Finite element mesh, (b) wave orthogonals and (c) wave rays 

4.3. Refraction analysis 

For wave-like solutions (29) disturbed by a discontinuity in a regular grid, the unit amplitude 
incident wave in region 1 is assumed to give rise to a reflected wave (with amplitude b)  and a 
transmitted wave (amplitude z). It is also assumed that a wave is formed along the interface between 
the two boundaries (at +=j=O) with amplitude u. The solution in the two regions and along the 
interface is given by 

n - ei(wnAt-jy,l -by]) + pe@nAf+jy,~ - ~ Y , I )  forj 0, (33) qj*k - 
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where ( y x l ,  yyl)=(ulhrl cos 8,, olAyl sin 8,) and (yx2,  yy2)=(c72Ax2 cos O,, 02Ay2 sin Q2). The 
known parameters in equations (33) to (35) are o, c1 and 8,; the five unknown parameters are 
ci, p, z, c2 and 02. 

The assumed solutions in equations (33) to (35) need to be compatible at the interface x = 0 for all 
times and for all values o f y =  kAy. As a result, equations (33) to (35) yield 

1 + p = c i  (3 6 )  

= z, (37) 

yyl = yy2 (Snell’s law) (38) 

= y, say. (39) 

The dispersion relation applicable to each of the two regions can be found from equation (30) by 
substituting the appropriate values for C,, C, yx, yy and s. For region 1, the dispersion relation (with 
s =  1) is 

The dispersion relation for the downstream region 2 (with s = l/r) is 

Being a linear system, the wave frequency (w) associated with the reflected and transmitted waves is 
unchanged from that of the incident wave. Equations (40) and (41) can be combined to eliminate the 
angular frequency w and yield an expression for yx2 (which includes the two unknowns O2 and 0 2 )  

(42) 

= R (say), (43) 

2 - cosyxl - 2 / 9  - cosy,(2cosyx, + 1/12 - 1) 
(1 - 2/r2) - cosy,(l/r2 + 1) c O S Y x 2  = 

where equations (38) and (39) have been used. Equation (42) relates the wave number in region 2 to 
that in region 1. 

The amplitudes a, p and z may be found from equation (32) after substituting equations (33) to (41). 
After a great deal of algebraic manipulation the results are 

B - A sin yx2 ’ = B + A sin yx2 7 

2B 
B + A sin yx2 ’ 

T =  (45) 

where 

A = ( l / r  + r )  cosy, + (2/r - r) ,  (46) 

B = (1 + 2 cos y,,) sin y x l  . (47) 

For very long incident wavelengths ( L J ,  it can be shown that equations (45) and (44) simplify to z % 1 
and p 1 respectively. This can be shown using Taylor series expansions as follows. 
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As L1 becomes very large, yx l  and yy become very small. Taylor series expansions then yield the 
following approximations: 

(48) 2 C0S(Yx1) = 1 - 0.5Yxl t 

cos(y,,) = 1 - 0.5~;. (49) 

When equations (48) and (49) are substituted into equation (42), the result is 

?Y:l c0s(yx2) = 1 - - 
2 

and substitution of equations (48) to (50) into equation (45) leads to the result that z = 1 .  Equation (37) 
results in B x 1. The physical interpretation of this result is that the very long waves are relatively 
unaffected by the change in mesh spacing. 

4.4.  Occurrence of total internal reflection 

It is evident from equations (44) and (45) that provided yx2 is real, the reflection and transmission 
coefficients are also real. (It will be assumed herein that yx l  and yp which refer to the incident wave, are 
real. A complex value would correspond to an incident wave which is exponentially decaying or 
growing in space.) 

Inspection of equation (42) shows that although the right-hand side (R) is always real, yx2 need not 
be real. Whenever the right hand side exceeds unity, yx2 is complex and can be represented by 

~ x 2  = (~x2)r + i ( ~ x 2 ) i .  

co~(~x2) = cos(~x2)r cosh(yx2)i - isin(yx2)r sih(yx2)i 

(51) 

(52) 

Taking the cosine of equation (51) and incorporating equation (43) gives 

= R. (53) 

yx2 = + icosh-I(-R) for R < -1, (54) 

Equating the real and imaginary parts yields two solutions for (yx2)r and ( 7 ~ ~ ~ ) ~  and hence yx2 

yx2 = 0 + i cosh-'(R) for R > 1. ( 5 5 )  

When R < - 1 the reflection and transmission coefficients corresponding to yx2 in equation (54) can be 
found from equations (44) and (45) 

B + iAsinh[cosh-I(-R)] 
a = B - iA sinh[cosh-I(-R)] ' 

2B 
B - iA sinh[cosh-'(-R)] ' 

z =  (57) 

When the dimensionless wavenumber in region 2 is yx2 = + i cosh- I (  - R) (say), the solution in the 
two regions is 

,.,j, = ei(onAt-Jyx, - ~ Y J  + gei(wnAt+ivx~ -kyY) forj 0, (58) 

- ye fo r j20 ,  (59) - zei(onAf-jn-ky ) j cosh-l(-R) 
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where e J cosh-'(-R) is the spatial damping factor in the x-direction of the 2 h 2  transmitted wave in the 
x-direction. 

and z can be found corresponding to the value of yx2 when 
determined by equation (55).  Of interest is equation (56) from which it is clear that whenever yx2 is 
complex, 1 I = 1. This corresponds to TIR. Figure 4a, b contains the magnitudes of the reflection 
coefficient from equations (44) and (56) for Ax2/Axl = 1/2 and 2 respectively. 

It is obviously of value to determine the conditions under which TIR occurs. By examining the 
conditions under which the right hand side of equation (42) exceeds unity, the 2D domains of yxl and 
yy (0 d y x l  ,< n, 0 d yy d n) for the incident wave which lead to TIR, can be established. Figure 5a, b 
indicates the regions of yxl and y, which result in complex yx2 when Ax2/Axl = 1/2 and 2. It is 
interesting that TIR can occur for both mesh expansion and mesh contraction in the x-direction. 

When R > 1 similar expressions for 

4.5. Energy balance across the interface 

The group velocity defines the rate at which energy is conveyed by a wave. Application of the 
concept of group velocity to 1D numerical schemes has been well d ~ c u m e n t e d ~ ~ ~ ' ~  and the theory is 
easily extended to account for two dimensions. The components of the group velocity vector are 

Differentiating equation (30) with respect to ox and o, leads to 

S 'I sin2(wAt)c, = (T) CXCY (g) siny,[ (s + ;> cosy, + 2s - - , 

sin y,,[(s + 1 /s) cos yx + 2/s - s] 
sin yx[(s + 1 j s )  cos y, + 2s - 1 /s] ' 

t a n 4 = s  

where 4 is the angle the group velocity vector ;g makes with the x-axis. Note that whereas the wave 
orthogonal is perpendicular to the wave crest and is in the direction of the phase velocity, the wave ray 
is distinct and is in the direction of the group velocity (see Figure 3b, c). In the continuum, the wave 
orthogonals and wave rays coincide. Equations (60) to (62) can be applied to each of the two regions 
separately by substituting the appropriate values for Axl, Ax2, Ay, yxr  and y,.. . The results are 

(2 cos yxl + 1) sin y, 
tan '1 = (2 cos y, + 1) sin yxl 1 

(64) 
1 [(r + 1 / r )  cos yx2 + 2r - 1 /rl sin y, 

[(r + 1 / r )  cosy, + 2/r  - r] sin yx2 . tan42 = (;) 
The energy flow (governed by equations (61) and (62)) is deflected by the discontinuity at x = 0. This 
is illustrated in Figure 3c which shows a wave front of energy (rather than phase) being refracted. The 
width of the ray tube is reduced from PR to QS. From the geometry of the figure, if PR = 1 then 
QS=COS 4 2 1 ~ 0 ~  41. 
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Figure 4. Magnitude of the reflection coefficient for mesh size ratios (a) Axx~lAx~ = 1/2 and (b) AxzlAxl  = 2 
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Figure 5.  Domains of the dimensionless wavenumbers ( y x l ,  y,,) for which total internal reflection occurs (shown shaded) for the 
mesh size ratios:- (a) Axz/Ax, = 1/2 and (b) Axz/Axl = 2 

The total energy per unit surface area (or energy density), E is given by 

1 
E = pga2, 

where p is the density of the fluid, g is acceleration due to gravity and a is the wave amplitude. The 
wave energy flux (Q, through a ray tube of width w in the direction of the group velocity vector, is 
given by 

F = Ecgw 

1 2  = -pga cgw. 

From Figure 3 the net energy flux towards the junction 
reflected and transmitted waves is: 

2 

Fnet = Finc - Fref - Ftrans 

(67) 

(Fnet) due to the presence of the incident, 

Substituting equations (37), (45) and (61) (with the appropriate parameters for the two regions) into 
equation (68) shows that F,,, is zero and hence energy is conserved across the interface. 

and T are complex. Equation (68) is still valid except that now I j? I must be 
used in place of p and similarly for T. Under these conditions I p I = 1 and it is easily seen from 
equation (68) that energy is conserved when there is no energy flux associated with the evanescent 
transmitted wave. This result is the same as for the 1D case.3 

When TIR occurs, 

4.6. Numerical experiments 

A series of 20 numerical experiments were performed to check the results of the analysis. The 
conditions varied were the incident wavelength (Ll = 27hl),  the wave approach angle (6,) and the 
mesh expansion or contraction ratio in the x-direction (AXZIAXI). Six tests were selected for display. 
The input data is contained in Table I and in all tests, the following values were adopted: 
Ax1 = A y =  lm, c=5  m/s and At=0-2s  (or Cl = 1 and C,= l/r). 

The damping factor in Table 1 refers to the spatial damping of the transmitted wave when TIR 
occurs (see equation (59)). All tests were ‘hot started’. That is, the analytical solutions from equations 
( 3 3 )  and ( 3 5 )  were used to prescribe the initial conditions for the FE wave model. The wave model was 
then run and the residual or difference between the computed solution and the analytical solution was 
plotted along a transect at right angles to the interface. Any mismatch between the computed solution 
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Table I. Data for numerical experiments 

B z Damping Yx2 
Factor 

1 2 2.88 112 30" 46.0" -0.71 0.29 0 0.241 fl: 

2 4 4.00 2 0" 0" 

4 4 4.32 112 30" 32.7" 0.12 0.88 0 0.195 x 
5 8 7.28 2 30" 27.0" 0.16 1.16 0 0.490 II 
6 8 7.39 2 45" 40.8" 0.14 1.14 0 0.410 n 

n- 1.76i 
n-2.06i 

e- I .76J 

1 ,2se0.90 e-2.06j 
I .  I 1 . ~ - 1 . 2 3  

3 4 3.58 2 300 26.6" -1.e-''35 
- 

and the analytical solution is soon apparent as a (non-zero) disturbance in the residual. Such a 
disturbance would emanate from the interface and expand in both the upstream and downstream 
directions from the first time step onwards. Note that TIR is predicted in Tests 2 and 3. It should be 
noted that in the experiments, no special internal boundary equations were applied across the interface 
but the governing FE equations applied throughout the domain. Any reflections from external 
boundaries were able to be excluded from the results due to the remoteness of the external boundaries 
from the area of interest. 

The experimental procedure was as follows: 

a 

b 

a 

4.7. 

Parameters needed for the initial conditions were calculated. 
Specify: L1, el and Ax2 
Calculate: a1 =27c/L1, (axl, ay)=(al cos el, o1 sin el), (yXl, yyl)=(axlAxl, ayAyl), w from 
equation (30), yx2 from equation (42), (p, z) from equations (44) and (45) or equations (56) 
and (57) if TIR occurs, y2 and L2 from Snell's law and yx2 = a2Ax2 cos 02 

Calculate the initial conditions from equations (33) and (35). 
Run the model and check for any discrepancy between the computed solution and the analytical 
solution. 

Results and conclusions 

The experimental results from the wave model are presented in Figures 6 to 1 1. For each test, there is 
(a) an oblique view of the 2D wave field as it passes across the interface between the two regions and 
(b) a 1D transect parallel to the x-axis, showing the variation in the variable q after a number of time 
steps. The conclusions from the analysis and the numerical experiments are: 

In all cases, the results show that the analytical solution is valid since the residuals in each transect 
remain zero. (In Figures 6b to 1 lb, the residuals are represented by small triangles). That is, the 
analytical solution was 'held' by the model. (It should be commented that in Figure 8 it appears 
that the transmitted wave is moving parallel to the x-axis. This is not the case however and is a 
consequence of the graphics package representing the very small amplitude of the spatially 
damped, transmitted wave.) 
The longer the incident wavelength relative to the nodal spacings in both regions, the more 
transparent is the incident wave to mesh discretisation. As the incident wavelength is increased, 
the amplitude of the (spurious) reflected wave is reduced, and the closer the transmitted wave 
amplitude is to unity. The degree of spurious numerical refraction is reduced at the longer 
wavelength end of the spectrum. 
TIR occurs when cos yx2 exceeds unity and yx2 is complex. If yx2 = .n + i cosh- I (  - R), then the 
transmitted wave has a 2Ax2 wavelength in the x-direction. (If yx2 = 0 - i cosh- '(R),  the 
transmitted wave would have an infinitely long wavelength in the x-direction.) 
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Figure 10. Test No. 54a) perspective view and (b) transect parallel to x-axis 

downstream of the interface in the x-direction (i.e.j= 1,2 and 3), the amplitude of the transmitted 
wave is reduced from 1 z I at the interface to 0.172 I z I , 0.03 1 T I and 0.0050 17 I respectively. 
Factors affecting the occurrence and degree of spurious reflection and refraction occurring in 
wave models will depend upon: 
* their formulation (i.e. whether they are based upon the shallow water equations or the second 

order wave equation as well as the particular numerical algorithm used to discretise the 
governing equations), 

* the incident wavelength, 
* changes in mesh size, and 
* the approach angle. 

Figure 1 1. Test No. -a) perspective View and (b) hansect parallel to x-axis 
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In wave models with non-uniform meshes, spurious refraction and reflection will be occurring 
throughout. Such effects can be minimised by ensuring that the most important wavelengths are 
well resolved by the mesh. 
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